Microwave Synthesis and Magnetic Investigation of CuFe2O4 Nanoparticles and Poly Styrene-Carbon Nanotubes Composites

Authors

  • Davood Ghanbari Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
Abstract:

At the first step CuFe2O4 nanoparticles were synthesized by a fast and facile microwave method. The obtained nanoparticles and modified carbon nano tubes were added to poly styrene matrix. The products were characterized through Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Vibrating sample magnetometer shows nanoparticles exhibit ferromagnetic behavior. The influence of CuFe2O4  nanostructures on the flame retardancy of the polystyrene (PS) matrix was studied using UL-94 analysis. The enhancement of thermal stability and flame retardancy of nanocomposites is due to magnetic CuFe2O4 barrier against flame, oxygen and evaporation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

microwave synthesis and magnetic investigation of cufe2o4 nanoparticles and poly styrene-carbon nanotubes composites

at the first step cufe2o4 nanoparticles were synthesized by a fast and facile microwave method. the obtained nanoparticles and modified carbon nano tubes were added to poly styrene matrix. the products were characterized through fourier transform infrared spectroscopy, x-ray diffraction, and scanning electron microscopy. vibrating sample magnetometer shows nanoparticles exhibit ferromagnetic be...

full text

investigation of the electronic properties of carbon and iii-v nanotubes

boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...

15 صفحه اول

Microwave-Assisted Synthesis of CuFe2O4 Nanoparticles and Starch-Based Magnetic Nanocomposites

Magnetic CuFe2O4 nanoparticles were synthesized by a facile microwave-assisted reaction between Cu(NO3)2 and Fe(NO3)3. The magnetic nanoparticles were added to starch to make magnetic polymeric nanocomposite. The nanoparticles and nanocomposites were characterized using X-ray diffraction and scanning electron microscopy. The magn...

full text

Microwave-assisted synthesis of SiO2 nanoparticles and its application on the flame retardancy of poly styrene and poly carbonate nanocomposites

Various morphologies of silica nanoparticles were synthesized by a microwave-assisted Pechini method. Silica nanostructures were synthesized via a fast reaction between tetra ethyl ortho silicate and ammonia at presence citric acid and other effective agents in Pechini procedure. Then for preparation of polymer-matrix nanocomposites, SiO2 nanoparticles were added to poly carbonate (PC) and poly...

full text

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

Hydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite

Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform i...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  278- 284

publication date 2016-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023